
  
ABSTRACT 

 
Inversion of circulant Hermitian matrices is one of the most 
computationally complicated algorithms used in 
communication, signal processing, and other systems. In 
particular, it may be used in tap solvers of advanced HSDPA 
systems. In this paper, a novel fast method for finding the 
inverse of a circulant Hermitian matrix is proposed. The 
proposed method is based on using Discrete Cosine (DCT-1) 
and Discrete Sine (DST-1) transforms of Type 1. It reduces 
the number of operations approximately by a factor of four 
compared to conventional Fast Fourier Transform (FFT) 
based method. 

 
 

 

I. INTRODUCTION 
 

Tight computational requirements of Software Defined 
Radio (SDR) systems require careful optimization of the 
algorithms used in these systems. One of important 
algorithms used in advanced digital radio systems is 
inversion of special matrices. For example, in linear 
equalizer tap solvers of High Speed Downlink Packet 
Access (HSDPA) receivers, as well as in Wideband Code 
Division Multiple Access (WCDMA) systems inversion of 
circulant Hermitian matrices, is one of the most 
computationally intensive algorithms.    

 Matrix inversion as a fundamental operation of linear 
algebra being used in various application fields has always 
been in the focus of researchers. In the general case, for 
inversion of arbitrary (N ×N )  matrix using the most known 
methods such as Gauss elimination method, O(N3) 
operations are needed. In 1969, Strassen [1] proposed an 
algorithm for matrix inversion that needs approximately 
O(N2.8) operations. Since then a number of algorithms 
further reducing this complexity were proposed. However, 
the complexity of arbitrary matrix inversion still remains 
well above O(N2) operations.  
 
 

Luckily, matrix inversion operations used in 
communication systems are often related to matrices of 
special structure. Computational complexity of inversion of 
such matrices can significantly be reduced by making use 
the knowledge of their special structure. For example, it is 
well known that symmetric Toeplitz matrices can be 
inverted with the complexity of O(N2) (see, e.g. [2]). 
Furthermore, fast real-valued Fourier transform or fast 
Hartley transform may be used for inversion of symmetric 
real-valued Toeplitz matrices resulting in O(NlogN) 
complexity.  

Here we consider the problem of reducing the 
complexity of tap solvers in HSDPA systems where the 
most computationally complex operation is the inversion of 
complex-valued circulant Hermitian matrices. The 
complexity O(NlogN) of inversion of such matrices may be 
reached by using complex-valued Fast Fourier Transform 
(FFT) algorithm (see [3]-[5]). In [6], a method for inverting 
(N × N )  Toeplitz matrices using fast Discrete Cosine and 
Sine transforms of order N  is described wherein inversion 
of a Toeplitz matrix is first reduced to inversion of a 
symmetric and an anti-symmetric matrices. 

In this paper, we propose a new algorithm that further 
reduces the complexity of tap solvers by using circulant 
Hermitian matrix inversion method proposed in [7]. The 
proposed method is based on using slightly modified Type 1 
Fast Discrete Cosine Transform and Type 1 Fast Discrete 
Sine Transform of orders N / 2 . The number of operations 
in the proposed algorithm is approximately four times lower 
than that of required by conventional FFT based algorithm. 
 

II. DEFINITIONS AND CONVENTIONAL METHODS 
 
Our main target is to reduce the complexity of tap solvers 
for advanced HSDPA equalizer receivers where inversion of 
circulant Hermitian matrices is a very computation 
demanding part. Aspects of the usage and implementation of 
such equalizers have been described by several authors, for 
example [10]. The chip-level signal model for one 
transmitter and one receiver antenna system can be 
represented by y = Hs+n , where y  is the received chip 
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sequence (the input to the equalizer), H  models the 
transmission channel including the influence of the transmit 
filter, multi-path fading and the receiver filter, s  is the 
transmitted chip-sequence, and n  represents the noise as 
seen by the receiver. The structure of H is: 
 

H=
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where hn , n = 0,...,m−1 , represents the channel impulse 
response and m  represents the channel delay spread. The 
output of the chip-level equalizer receiver is ŝ = xHy : a 
delayed estimate of the transmitted chip s . The vector x  
represents the filter taps obtained from the equalizer tap 
solver. The LMMSE equalizer solution for x  is (see [11]): 
 

x =σ s
2HH σ s

2HH H+σ n
2I( )

−1
δD =σ s

2H HA−1δD  

 
where σ s

2  and σ n
2  denote variance of the chip and noise 

sequence, respectively. Thus, the essential task of the tap 
solver is to find the D-th, D=0….,L-1, column wD  of the 
inverse of an L× L  Hermitian Toeplitz matrix A: 
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where r0  is a real number (since A  is Hermitian). In 
general, this is not a circulant matrix. However, extensive 
simulations were carried out (see [3]) showing that the 
performance of tap solvers is only negligibly worsened if the 
matrix A is modified so that it becomes a circulant 
Hermitian L× L  matrix of the form: 

C =
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*  r1

* r1
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, (1) 

 
 
With this modification, the problem of the tap solver is 
reduced to finding the vector   
 

wD =C
−1δD  (2) 

 
Where δD  is the Kronecker Delta vector consisting of all 
zeros except one unity at D-th position (multiplication of the 
matrix C−1  to δD  results in the D-th column wD  of C−1 ).  

Inverting circulant and, in particular, Toeplitz matrices 
is an old well-studied problem. In our case, however, there 
are additional features of the matrix being Hermitian and, 
therefore, having a real valued main diagonal, which helps 
in further reduction of computational complexity.  

In conventional implementations of HSDPA downlink 
receivers (see [3] – [5]), inversion of the circulant matrix C  
is implemented with the help of Discrete Fourier Transform 
(DFT) based on the fact that every circulant matrix is 
diagonalized by 2-D DFT and, therefore can be decomposed 
as follows: 

 
C = FGFH  

(3) 

 
where F  and FH  are the DFT matrix and its conjugate 
transposed matrix (which coincides with the inverse DFT 
matrix), respectively, and G = diag(g)  is a diagonal matrix 
such that the vector g  of its main diagonal elements is the 
DFT of the first column C(*, 0)  of the matrix C, that is  

 
g = F ⋅C(*,0) . (4) 

 
Substituting (3) into (2) yields: 

 
wD = FG

−1FHδD  (5) 
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Also note that FHδD  is the D-th, D=0….,L-1, column 
of the (known) inverse DFT matrix, and G−1FHδD  is a 
vector-column obtained as point-wise product of FHδD  with 
the vector 1. / g  being point-wise inverse of the vector g
from (4). 

Therefore, the desired vector wD  can be obtained 
according to the following algorithm, which makes use of 
the well-known fast Fourier transform (FFT) algorithm for 
efficient computation of DFT. 

1. Find vector g = F ⋅C(*,0)  by implementing FFT 
over the first column of the matrix C . 

2. Element-by-element (point-wise) invert the vector 
g  obtained at the 1st step. 

3. Point-wise multiply the D th, D = 0,...,L−1 , 

column FHδD  of the inverse DFT matrix by the 
inverted vector obtained at 2nd step. 

4. Compute the desired vector wD  by implementing 
FFT over the vector obtained at the 3rd step. 

This algorithm significantly reduces the number of 
operations required to invert a circulant matrix from O(L3)  
operations in conventional Gauss elimination method to 
O(L log L)  operations. 

 
 

III. THE PROPOSED ALGORITHM  
 
It is very well known, that the inverse C−1  of an L× L  
circulant Hermitian matrix C  (of the form (1)) is also 
circulant and Hermitian. Therefore, to find arbitrary D th 

column wD = wD
0 ,wD

1 ,...,wD
L−1"

#
$
%
T

, D = 0,...,L−1, of C−1  or, 

more in general, to invert the matrix C , it is sufficient to 

find only the subvector w0 = w0
0 ,w0

1,...,w0
L/2!

"
#
$
T

 of the first 

L / 2+1  components of only the 1st column w0  of C−1 . The 
other L / 2−1  components of the 1st column may then be 
obtained as conjugates of these components based on the 
relation: 
 

w0
i = w0

L−i( )
*

, i = L / 2+1,...,L−1 , (6) 

 
which is true since the matrix C−1  is circulant and 
Hermitian. Then the D th column wD  of C−1 , for an 
arbitrary D = 0,...,L−1, may be obtained by circular shift 
for D  positions down from w0 .  

The proposed algorithm is based on the lemma below, 
for formulating which let us introduce a few notations and 
remind the definitions of Type 1 DCT and Type 1 DST 
transforms.  First, we adopt the Re() and Im() notations for 
the real and the imaginary parts of a (scalar or vector) 
variable, respectively. Second, for a vector x  we use the 
notation x(n :m)  to denote the subvector of x  consisting of 
the components indexed n  through m .  

Now, let us denote C1
L/2+1  the L / 2+1( ) ⋅ L / 2+1( )( )  

matrix with entries: 
 

cn,m = bm cos(πnm / (L / 2)) ,  

bm =
1/ 2,   for  m = 0,L / 2
1,       otherwise

!
"
#

$#
, n,m = 0,...,L / 2 . 

(7) 

 
This is actually slightly different from matrix 

DCT1(L / 2+1)  of the well-known Type 1 DCT transform 
of order L / 2+1 , which consists of the entries:  

 

c 'n,m = bmbn cos(πnm / (L / 2)) , b0 = bL/2 =1/ 2 , 

n,m = 0,...,L / 2 , 
 
(see [8]). It is well known that the Type 1 DCT of order 
N +1  may be computed with a fast algorithm, which 
requires  
 

 and 
(8) 

   

  
multiplications and additions, respectively [8]. The 
transform y =C1

L/2+1x  with the matrix C1
L/2+1  differs from (

L / 2+1)-point Type 1 DCT only in scaling two inputs and 
two outputs since 

 
y =C1

L/2+1 ⋅x = B ⋅DCT1(L / 2+1) ⋅B ⋅x  
 

where B = diag 1/ 2,1,...,1,1/ 2( ) . Therefore, there exists 

also a fast algorithm for implementing the transform with 
the matrix C1

L/2+1 , which requires at most four extra 
multiplications compared to fast ( L / 2+1)-point Type 1 
DCT (an actually, even better algorithm may be developed 
but this is out of the scope in this work). Thus, the 
complexity of the transform with the matrix C1

L/2+1  is not 
more than (substitute N = L / 2  in (8)): 
 
 

Nmul (DCT1) = N / 2( )log2 N −3N / 4
Nadd (DCT1) = 3N / 2( )log2 N − N / 2
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 and 

 
(9) 

 

 
multiplications and additions, respectively. Furthermore, let 
us denote by S1

L/2−1  the L / 2−1( )× L / 2−1( )  matrix of the 

Type 1 DST (see [9]) with the entries  
 

,  (10) 

 
Note that also for this transform there exists a 

fast algorithm with the complexity of  
 

 Nmul(S1
L/2−1) = (L / 4)log2 L −3L / 4 and 

Nadd (S1
L/2−1) = (3L / 4)log2 L − 7L / 4− log2 L +3

 
(11) 

 

multiplications and additions, respectively. 
The proposed algorithm is based on the following lemma 

that was proven in [7].   
 
Lemma. For an arbitrary L× L  circulant Hermitian matrix 

C , the real and the imaginary parts of the subvector 
w0 =w0 (0 : L / 2) of the first column w0 of C−1  can be 
expressed as follows: 

 
Re(w0 ) =C1

L/2+1Qp ,  Im(w0 ) = − 0,S1
L/2−1Qs, 0"# $%  (12) 

where  

p = p0 , p1,..., pL/2!" #$
T
=C1

L/2+1 Re c0 (0 : L / 2)( )( ) ,  

s = s1,s2 ,...,sL/2−1"# $%
T
= S1

L/2−1(Im(c0 (1: L / 2−1))) , 
(13) 

c0  is the first column of the matrix C , and Q = diag(q)  is 

a diagonal matrix where q = q0 ,q1,...,qL/2!" #$  with 

q0 =1/ p0 , qi =1/ ( pi
2 − si

2 ) , i =1,...,L / 2−1 , 

qL/2 =1/ pL/2 . 
(14) 

 
Based on  this Lemma, the following algorithm may be 

applied to invert a circulant Hermitian matrix. 
 
Algorithm.  
 

Input: An ( (L / 2+1) )-point subvector c0 (0 : L / 2)  of the 
first column c0 of a circulant Hermitian matrix C. 

 
Note that, in the case of HSDPA receiver this is the same as 
the ( / 2 1L + )-point subvector of first components of the 

first column of the original Toeplitz matrix A, and therefore 
there is no need for constructing the circulant matrix C as in 
the conventional implementations.   
 
Output: The subvector w0 =w0 (0 : L / 2)  of the first column 

   w0 of C−1 .  
 
If needed, the whole first column and all the other columns 
of C−1  may be formed by making use of equation (6) and 
circular shifts.  
 
Computation: 
 
Step 1. Find vectors p  and s  according to (13). For this, 
implement fast (L / 2+1) -point fast transform with the 
matrix C1

L/2+1  over the vector Re(c0 (0 : L / 2))  and 
(L / 2−1) -point fast Type 1 DST over the vector 
Im(c0 (1: L / 2−1)) .  
 
Step 2. Find the vector Re(c0 (0 : L / 2))  according to (14).  
Step 3. Point-wise multiply the vectors p  and s  obtained at 
the 1st step by the components of the vector obtained at the 
2nd step.  
 
Step 4. Find the real and the imaginary parts of the vector 
w0 =w0 (0 : L / 2)  according to (12), that is, implement 

(L / 2+1) -point fast transform with the matrix C1
L/2+1  and 

(L / 2−1) -point fast Type 1 DST. 

IV. COMPLEXITY ANALYSIS AND DISCUSSION 
 

In this section we analyze the complexity of the Algorithm. 
The proposed algorithm takes into account that the matrix 
C  is not only circulant but also Hermitian, thus its diagonal 
elements are real and furthermore it reduces the number of 
required operations by approximately a factor of four. 
Instead of implementing L-point complex-valued FFT, 
(L/2)-point real-valued fast DCT-1 and fast DST-1 
transforms are implemented in the proposed algorithm. This 
gives opportunity to reduce the implementation time (due to 
less number of operations) as well as the required memory 
and data movements (due to shorter arrays), and possibly the 
energy consumption. 

The complexity of the proposed Algorithm in 
comparison with the conventional FFT-based algorithm is 
summarized in Table 1.  

At each of the Steps 1 and 4 of the Algorithm, one 
(L / 2+1) -point fast transform with the matrix C1

L/2+1  and 
one (L / 2−1) -point fast Type 1 DST transforms are 

Nmul (C1
L/2+1) = L / 4( )log2 L−5L / 8+ 4

Nadd (C1
L/2+1) = 3L / 4( )log2 L− L

sn,m = sin(πnm / (L / 2)) n,m =1,...,L / 2−1
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implemented. According to (9) and (11), total of  
  

Nmul (step1) = L / 2( )log2 L−11L / 8+ 4  

real multiplications and 

 

Nadd (steps1) = 3L / 2( )log2 L−11L / 4− log2 L+3  

 
real additions will be required for each of these two steps.  

At step 2 of the Algorithm, where equations (14) are 
implemented,  

 
Nmul (step2) = L− 2   

 
real multiplications,  
 

Nadd (step2) = L / 2−1  
 
real additions, and  
 

Ndiv (step2) = L / 2+1   
 
real divisions are needed.  

And, in addition  
 
Nmul (step3) = L   

 
real multiplications are needed to complete Step 3.  

The last row of Table 1 presents the total operation 
count. As can be seen from Table 1, the number of real 
operations in the proposed algorithm is approximately the 
same as the number of complex operations in the 
conventional FFT based algorithm. In general, one complex 
multiplication “costs” approximately four real 
multiplications and two real additions, while one complex 
addition “costs” two real additions. (Although in another 
approach one complex multiplication can be implemented 
with three real multiplications and more additions, this does 
not significantly change the conclusions.) The operation 
counts with respect to these costs are presented in the last 
three columns of Table 1. As can be seen, the proposed 
method is approximately four times less costly than the 
current FFT-based method since it uses more than four times 
less multiplications, twice less divisions and approximately 
three times less additions. 

Also, the proposed method deals with shorter input and 
output arrays and separately with real and imaginary parts of 
the arrays. In a careful implementation, this will give 
opportunity to reduce the required memory size, data 
bandwidth, and data transfers. Due to less amount of 

computations needed, the proposed method should also give 
opportunity to reduce energy consumption.  

Figure 1 presents the plots of the total operations counts 
of the proposed method and of the FFT-based method for 
typical values of the matrix size L  in communication 
systems ( L = 64,  128,  256,  512,  1024,  2048 ). One can 
notice a large absolute difference in the numbers of 
operations. For the larger values of L  (which will likely be 
used in emerging communication systems) the absolute 
difference is even larger. 

V. CONCLUSION 

 
New fast DCT-1 and fast DST-1 based algorithm for 
inversion of circulant Hermitian matrices was 
proposed. This algorithm is approximately four times 
less costly compared to the conventional FFT based 
method. The proposed algorithm may be applied in 
advanced HSDPA and WCDMA downlink receivers 
and other communication systems.  
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Figure 1.  Comparison of the complexities of the conventional FFT based method and the proposed method:  

a) number of real divisions; b) number of real multiplications; c) number of real additions. 
 
TABLE I. Number of operations implemented in the proposed and conventional algorithms  
Step Proposed algorithm FFT- based algorithm 
 Count in complex ops Count in real ops 
 Div Mul. Add Div Mul Add Div Mul Add 
1 0 L

2
log2 L  

11 4
8
L

− +
 

2
3 log
2
L L

 

211 log 3
4
L L− − +

 

0 
2log

2
L L

 
2logL L  0 22 logL L  3L(log2 L−1)  

2 / 2 1L +  2L −  / 2 1L −  L 0 0 L 0 0 
3 0 L 0 0 L 0 0 4L 2L 
4 0 

2log
2
L L

 
11 4
8
L

− +
 

3L
2
log2 L  

211 log 3
4
L L− − +

 

0 
2log

2
L L

 
2logL L  0 22 logL L  3L(log2 L−1)  

Total / 2 1L +  2logL L  
3 6
4
L

− +
 

23 logL L 
25 2log 5L L− − +  

L 2logL L  22 logL L  L 24 logL L  8L(log2 L−1)  
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